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A semi�implicit formulation of the method of spectral deferred correc�

tions �SISDC� for ordinary di�erential equations with both sti� and non�

sti� terms is presented� Several modi�cations and variations to the origi�

nal spectral deferred corrections method by Dutt� Greengard� and Rokhlin

concerning the choice of integration points and the form of the correction

iteration are presented� The stability and accuracy of the resulting ODE

methods are explored analytically and numerically� The SISDC methods

are intended to be combined with the method of lines approach to yield

a �exible framework for creating higher�order semi�implicit methods for

partial di�erential equations� A discussion and numerical examples of the

SISDC method applied to advection�di�usion type equations are included�

The results suggest that higher�order SISDC methods are more e�cient

than semi�implicit Runge�Kutta methods for moderately sti� problems in

terms of accuracy per function evaluation�

�� INTRODUCTION

The question of how to construct stable and accurate numerical methods for

the solution of initial value problems determined by ordinary di�erential equations

�ODEs� has been studied extensively and with a great deal of success in the last

thirty years� In particular� for non�sti� ODEs� explicit high�order methods such as

Runge�Kutta� multi�step� or predictor corrector methods are well understood� and
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are readily available� e�g� ��	� 
� ��� For sti� systems� where e
cient methods are

implicit� the issues can be more complicated� but still many good methods have been

developed� e�g� ����� Nevertheless� Dutt� Greengard� and Rokhlin recently presented

a new variation of the classical method of deferred corrections� the spectral deferred

correction method �SDC� ����� Implicit versions of this method are shown to have

good stability and accuracy properties for sti� equations even for versions with very

high�order accuracy �up to thirtieth order in ������

Traditional explicit or implicit methods for temporal integration are often ine
�

cient when the equation being considered possesses two or more widely varying time

scales� The primary examples of such equations that motivate the current work re�

sult from the temporal discretization of partial di�erential equations �PDEs� which

model physical systems with two or more disparate time scales� Two well�known

examples are advection�di�usion�reaction problems and systems containing �uid�

membrane interactions� A common strategy for producing higher�order methods

for PDEs is the so called method of lines approach �hereafter MOL�� In MOL� a

PDE is discretized in space only� which results in a set of coupled ODEs� one for

each discretization variable� These ODEs� which often contain both sti� and non�

sti� terms� can then be solved with any appropriate integration method� When sti�

terms are present� it is often expensive to implement fully implicit ODE methods be�

cause spatial nonlinearities in the PDEs would require the solution of large coupled

nonlinear equations� It is therefore desirable to use semi�implicit ODE methods

which allow sti� terms to be treated implicitly and non�sti� terms explicitly�

Many semi�implicit methods for ODEs have indeed appeared in recent years�

and there are disadvantages to each� particularly when very accurate solutions are

required� In this paper� a family of semi�implicit SDC methods will be introduced

which are designed to overcome the disadvantages of existing methods� The main

advantage of SDC methods is that one can use a simple numerical method �even

a �rst�order method� to compute a solution with higher�order accuracy� This is

accomplished by using the numerical method to solve a series of correction equations

during each time step� each of which increases the order of accuracy of the solution�

The �exibility in the choice of the method used in the deferred correction iterations

makes SDC methods particularly attractive to problems possessing disparate time

scales since a lower�order accurate semi�implicit or time�split approach can be used

during each iteration without limiting the overall solution to lower�order accuracy�

In this work� a simple �rst�order� semi�implicit method is used in the context of SDC

to construct higher�order semi�implicit SDC methods �hereafter SISDC methods��

The outline of the paper is as follows� After a short description of the SDC

method in Sect� �� a semi�implicit version for a general class of ODEs is introduced

in Sect� �� and a discussion of the advantages of SISDC methods over existing

approaches is presented� The stability and accuracy of SISDC methods are in�

vestigated in Sect� �� Techniques for reducing the number of function evaluations

necessary for a given order of accuracy are also discussed� In Sect� �� numeri�

cal examples using an initial value ODE and two advection�di�usion type PDEs

demonstrate the accuracy and e
ciency of the methods�

�� THE METHOD OF SPECTRAL DEFERRED CORRECTIONS



A FOURTH ORDER SEMI�IMPLICIT PROJECTION METHOD �

In this section� the original SDC method appearing in ���� will �rst be reviewed�

A semi�implicit version suitable for equations with both sti� and non�sti� terms

is presented in the following section along with a discussion of the advantages of

SISDC methods over existing methods�

���� Mathematical Preliminaries

The initial value ODE takes the form

���t� � F �t� ��t�� t � �a� b� ���

��a� � �a� ���

Here� the solution ��t� and initial value �a are in CN and F � R � CN � CN �

It is assumed that F is smooth so that the discussion of higher�order methods

is appropriate� This assumption is more stringent than the Lipschitz continuity

necessary to assure that solutions exist �for some time� and are unique� �See any

standard text on ODE for the associated proofs��

The SDC method of Dutt� Greengard� and Rokhlin is based on the following

observations concerning the integral form of the solution to Eqs� �������

��t� � �a �

Z t

a

F ��� �����d�� ���

Given an approximation to the solution ���t�� the goal of all deferred corrections

strategies is to formulate an equation for the correction ��t� � ��t�� ���t�� Follow�

ing ����� note that a measure of the error in ���t� based on Eq� ��� can be written

E�t� ��� � �a �

Z t

a

F ��� ������d� � ���t�� ���

Since ��t� � ���t� � ��t�� Eq� ��� yields

���t� � ��t� � �a �

Z t

a

F ��� ����� � �����d�� ���

which implies

��t� �

Z t

a

F ��� ����� � ����� � F ��� ������d� �E�t� ���� �	�

This equation will be referred to as the correction equation�

Eq� �	� also gives an indication of how well E�t� ��� approximates ��t�� In a

numerical method for ODEs� the interval �a� b� generally spans a single time step

�tn� tn��� � �tn� tn ��t�� If F is Lipschitz continuous in � and jj�� � �jj � O��tr�

on �tn� tn���� then jj��t� � E�t� ���jj � O��tr���� Note also that if F is a function

of t alone� then ��t� � E�t� ����

The general strategy of the SDC method is to use a simple numerical method to

compute a provisional solution � on the interval �tn� tn���� and then to solve a series

of correction equations based on Eq� �	�� each of which improves the accuracy of

the provisional solution� In ����� a forward or backward Euler type method is used
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for computing both the provisional solutions and the corrections� This procedure is

reviewed in the next section and a semi�implicit version is then presented in Sect� ��

���� SDC based on Euler Methods

Given Eqs� ������� and some interval �tn� tn��� on which the solution is desired�

the SDC method proceeds by �rst dividing �tn� tn��� into p subintervals by choosing

points tm for m � � � � � p� with tn � t� � t� � � � � � tp � tn��� In the following� the

interval �tn� tn��� will be referred to as a time step while a subinterval �tm� tm��� �

�tm� tm � �tm� will be referred to as a substep� An approximate solution ���tm�

is computed for m � � � � � p using the standard forward Euler method for non�sti�

equations or the backward Euler method for sti� problems�

Next� a sequence of corrections �k�tm� is computed by approximating Eq� �	�

which provides an increasingly accurate approximation to the solution �k�� �

�k � �k� In order to do this� the function E�t� �k�t�� must be approximated using

numerical quadrature� For this reason the points tm are chosen in ���� to correspond

to the nodes for Gaussian quadrature� The choice of nodes is discussed further at

the end of Sect� ��

Eq� �	� is also approximated by using forward or backward Euler� For instance�

using the notation �km � �k�tm� �and likewise for �km and Em��
k��� the backward

Euler approximation to the correction equation is

�km�� � �km ��tm�F �tm��� �
k
m�� � �km���� F �tm��� �

k
m���� ���

� Em����
k��Em��

k��

By rearranging terms� a direct equation for �k�� can be derived� Let Im��
m ��k�

denote the numerical quadrature approximation to

Z tm��

tm

F ��� �k����d��

then using Eq� ����

Em����
k��Em��

k� � Im��
m ��k�� �km�� � �km�

Hence� Eq� ��� is equivalent to

�k��
m�� � �k��

m ��tm�F �tm��� �
k��
m���� F �tm��� �

k
m���� � Im��

m ��k�� �
�

When SISDC methods are used with MOL� this equation allows one to consider

boundary conditions for �k�� directly� In the numerical implementation however�

the incremental form ��� is used to avoid a loss of precision�

As long as the integral terms Im��
m ��k� are computed to O��tk��� �which in this

setting implies some smoothness in F �� each iteration of the correction equation will

increase the order of accuracy of the solution by one order� Hence for k iterations of

the correction equation� the above procedure will produce an approximate solution

with truncation error of size O��tk��� and global accuracy O��tk���� �See e�g�

��
� for analysis of deferred correction methods�� If F �t� �� is Lipschitz continuous

in �� it is straightforward to show that the numerical method is also� Hence� since
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the entire SDC procedure is a single�step method� convergence is assured �see e�g�

�����

Time step selection and error estimation for SDC methods is facilitated by the

fact that approximations to the correction are being directly computed� The size

of these corrections can be monitored as part of a time step selection procedure�

A number of possibilities are discussed in ����� and all these procedures are appli�

cable for the methods introduced here� Note that despite the number of function

evaluations needed in the SDC iterations� these methods are shown in ���� to be

competitive with existing methods in terms of accuracy per function evaluation�

�� SEMI�IMPLICIT SPECTRAL DEFERRED CORRECTIONS

The key advantage that SDC methods provide in the design of semi�implicit

methods for ODEs is that the numerical method used in each deferred correction

can be very simple� It seems natural therefore to use simple semi�implicit methods

in the context of SDC to construct higher�order semi�implicit methods� The details

of such schemes are presented in this section followed by a discussion of alternative

methods�

���� Details of The Semi�Implicit Methods

Consider the ODE

���t� � F �t� ��t�� � FE�t� ��t�� � FI �t� ��t�� ���

��a� � �a�

where t � �a� b�� FE is a non�sti� term and FI is a sti� term� The subscripts refer

to the desire to treat the non�sti� terms explicitly and the sti� terms implicitly�

This can be accomplished with a few straightforward modi�cations of the SDC

procedure described above�

A �rst�order numerical method for �nding ���tm� is simply

��m�� � ��m ��tm�FE�tm� �
�
m� � FI �tm��� �

�
m����� ����

When FI is linear� this type of method has also been referred to in the literature

as the W�Euler method� �See ���� for an analysis of W�methods�� Likewise� a

semi�implicit version of Eq� ��� is

�km�� � �km ��tm�FE�tm� �
k
m � �km�� FE�tm� �

k
m� ����

� FI�tm��� �
k
m�� � �km���� FI �tm��� �

k
m���� �Em����

k��Em��
k��

As in Eq� �
�� this equation can be rearranged to yield a direct update for �k��
m��

�k��
m�� � �k��

m ��tm�FE�tm� �
k��
m �� FE�tm� �

k
m� ����

� FI �tm��� �
k��
m���� FI �tm��� �

k
m���� � Im��

m ��k��

Eqs� ���� and ���� can be used to construct SISDC methods of arbitrarily high

order of accuracy�

A few comments on the form of the quadrature for Im��
m ��k� are required� In �����

the points tm are chosen to be the standard Gaussian quadrature nodes� and the so�

lution is only integrated at these nodes on the interior of the interval� This requires
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the use of extrapolation to yield the solution at the endpoint of the interval� Here�

the nodes from Gauss�Lobatto quadrature are used instead� hence no extrapolation

is necessary� Since the quadrature must be done for each subinterval �tm� tm����

there are actually p quadrature rules

Im��
m ��k� �

pX
l��

qlmF �tl� �
k
l � ����

for m � � � � � p� �� The coe
cients qlm can be precomputed� and the quadrature is

reduced to a simple matrix�vector multiplication�

Since the function F �tm� �
k
m� is known at p�� Gauss�Lobatto quadrature nodes�

the approximation to the integral of F over the entire time step� i�e�

Z tn��

tn

F ��� �k����d��

can be computed with error O��t�p���� The integrals in Eq� ����� however� are

computed with errorO��tp��� since they are simply computed as the integral of the

interpolating polynomial over the subinterval� Since a truncation error O��tK���

is required for a Kth�order method� choosing a value of p � K � � provides suf�

�cient accuracy in the quadratures� This choice is also su
cient to provide an

O��tK� approximation of the solution for any desired point through polynomial

interpolation at the quadrature nodes�

For ease of identi�cation� the SISDC method using P Gauss�Lobatto nodes �i�e�

P�� substeps� andK total iterations �orK�� iterations of the correction equation�

will be denoted SISDCK
P � This is slightly di�erent than the notation in ����� but

has the bene�t that an SISDCK
P method has global order of accuracy min�K�P ��

In the remainder of the paper� the methods considered will have P � K�

Note that the sum of the quadratures in Eq� ���� is the Gauss�Lobatto quadrature

rule� hence the sum of the quadrature errors on the subintervals is again O��t�p����

Therefore� in the time marching of the correction equation the individual errors can�

cel to an extent� and it is reasonable to suggest that SISDCK
K�� methods should

perform similarly to SISDCK
K methods while requiring fewer function evaluations

per step� This has been observed in numerical tests� although the observed di�er�

ences were slight in terms of accuracy per function evaluation� Lastly� rather than

using Gauss�Lobatto quadrature nodes� it is certainly possible to choose the nodes

in a way which results in the quadrature rules on each subinterval being more accu�

rate at the cost of reducing the accuracy of the quadrature over the entire integral�

However� it is not clear a priori whether this would improve the overall accuracy

of the method� and this idea is not pursued further here�

���� Comparison with Existing Methods

Like fully implicit or explicit SDC methods� SISDC methods can in principle be

constructed with an arbitrarily high order of accuracy� In general� the smaller the

tolerance for error� the more attractive a higher�order method becomes� and as is

shown in the next section� higher�order SISDC methods retain the good stability

properties of lower�order methods� In this section� multi�step methods� Runge�
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Kutta methods and operator splitting methods are all compared to SISDC meth�

ods��

High�order semi�implicit linear multi�step methods have been well documented

�see e�g� ����� and have also been studied in the MOL context �see e�g� ��� ��� ����

These methods have the disadvantage that they are not self�starting� they are

cumbersome when variable time�stepping is required� and higher�order versions

typically su�er from severe stability restrictions�

Because of the disadvantages mentioned above� Runge�Kutta methods have be�

come the most popular methods for the numerical solution of ODEs in the context of

MOL� Semi�implicit Runge�Kutta methods �also called IMEX or additive Runge�

Kutta methods� have been developed which are similar in style to fully implicit

SDIRK methods and are also closely related to W�methods ��� ��� ��� ���� The re�

cent paper by Kennedy and Carpenter ���� presents detailed numerical experiments

using semi�implicit Runge�Kutta methods which have good stability properties and

are e
cient in terms of accuracy per function evaluation for orders up to �ve �meth�

ods with order higher than �ve appear to have unfavorable stability properties��

Similar methods have also been used with MOL for PDEs with sti� and non�sti�

components �see e�g� ���� �� ��� ����

In all of the Runge�Kutta methods mentioned above� the value of the solution

computed during a time step is given by a particular linear combination of the

right hand side of the ODE evaluated at intermediate or stage values� some of

which have truncation errors of lower�order accuracy than the �nal value� The

linear combination is chosen so that the lower�order truncation errors in the stage

values cancel� and hence the exact form of these errors must be known� This makes

the generation of Runge�Kutta methods for more than two disparate time scales

very di
cult� It also limits the �exibility of how di�erent terms in the equation are

calculated�

In SDC methods� lower�order intermediate solutions are used only to calculate

forcing terms in the subsequent correction equation� and hence do not contribute

directly to the �nal value� This allows for a straightforward extension to problems

with three or even more time scales� and also allows di�erent time steps for di�erent

terms in the equation �see �	��� Two di�erent time steps could be used for SISDC

methods as well� but in the examples presented here� the cost of evaluating the

explicit piece is much less expensive than that of computing the implicit piece�

so there is little point in having a larger explicit time step� For some methods

for PDEs �e�g� those for hyperbolic conservation laws involving the solution of

Riemann problems�� the cost of computing the explicit piece may not be negligible�

Operator splitting is another approach to integrating an equation of the form of

Eq� ��� that allows �exibility in the way di�erent terms in the equation are updated�

In fact� the predictor step in SISDC can be thought of as a simple Strang splitting

using forward Euler on the explicit piece and backward Euler on the implicit piece�

The correction equation can further be thought of as correcting both the integration

error and splitting error simultaneously�

�A complete review of the literature will not be attempted� The citations given represent only
a selection of recent papers� See the bibliographies in the cited works for more complete citations�
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It has been well documented that when combined with MOL� Runge�Kutta meth�

ods typically su�er from a reduction in the order of accuracy when time dependent

boundary conditions are prescribed unless special care is taken when imposing in�

termediate boundary conditions ���� ��� �	� ��� �� ���� In particular� the exact

boundary conditions imposed for the PDE cannot be used for intermediate bound�

ary conditions without a degradation occurring in the order of accuracy� The loss

of accuracy appears as a boundary layer because the error at the boundary for in�

termediate stage solutions is forced to be zero� while the error in the interior of the

domain is of the size of the stage order of the method� The loss of accuracy occurs

when spatial derivatives of this boundary layer are computed since spatial deriva�

tives are not Lipshitz continuous� Suggestions for restoring full accuracy in certain

cases have been proposed for explicit Runge�Kutta methods �e�g� ��� ��� ����� but

at present� no general strategy for semi�implicit Runge�Kutta methods has been

developed�

A similar problem occurs as well with SISDC methods� but because intermediate

solutions do not contribute directly to the �nal solution� there is more �exibility in

the imposition of boundary conditions� Accuracy at the boundary can be iteratively

improved with the deferred corrections along with error in the interior� A paper

addressing the imposition of boundary conditions for SISDC methods applied to

PDEs where di�usion is treated implicitly is in preparation �����

�� STABILITY AND ACCURACY ANALYSIS

A complete stability analysis of numerical methods for nonlinear PDEs with

multiple time scales is possible only in the most specialized instances� With MOL�

one can instead perform a linearized analysis to yield insight into how the stability

of the method depends on the time step� Therefore a complete understanding of

the stability of the underlying ODE method is essential�

The stability of a given ODE method is traditionally studied by considering the

model problem

���t� � ��

���� � ��

where � is some complex constant� For a given method� let ����� denote the

solution computed using one step of the method and �t � �� The stability region for

the method can then be de�ned by the set of � for which j�����j � �� Alternatively�

the stability region can be interpreted as the region in which the product ��t must

lie for a given � so that the numerical solution is bounded as the number of time

steps goes to in�nity� Hence ����� is called the ampli�cation factor�

To examine the stability of SISDC methods� let � � �� �i for real constants �

and �� The model problem can then be split into

���t� � �i�� ��

���� � ��

where the imaginary piece of the equation is dealt with explicitly and the real piece

implicitly� This is the relevant model problem resulting from a linearized stability
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analysis of methods for advection�di�usion type PDEs� The stability diagrams for

SISDCK
K methods are computed on the model problem� The stability diagrams

for methods of third through seventh order are shown in Fig� �� The plots suggest

that each method is A����stable for roughly the same ��

−5 −4 −3 −2 −1 0 1
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7
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Stability Regions

− 3rd order

− 4th order

− 5th order

− 6th order

− 7th order

Re(λ)

Im
(λ

)

FIG� �� Stability regions for the SISDCK
K

methods with K ranging from three through
seven�

Since the amount of work being done for each step of an SISDC method in�

creases quadratically with the order� it is informative to scale the stability diagrams

proportionally� The stability diagrams scaled by the number of implicit function

evaluations required per time step� which is K�K � ��� are displayed in Fig� �� It

is tempting to draw the conclusion from this �gure that the lower�order methods

are more e
cient since relatively larger time steps can be taken� This is only true

however if one ignores the issue of accuracy� As will be discussed in the next sec�
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tion� the higher�order methods possess greater relative accuracy� In other words�

higher�order methods allow one to use a larger time step for a given error tolerance

than lower�order methods�

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0
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FIG� �� Scaled stability regions for the SISDC
K

K
methods with K ranging from three

through seven�

Although the SISDC methods above appear to be A����stable� none are L�stable�

As mentioned in ����� for the fully implicit SDC methods� ����� is simply a rational

function of the complex number �� hence

lim
j�j��

����� ����
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is independent of how � actually approaches in�nity� Therefore� the implicit SDC

method are L�stable if

lim
����

����� � �� ����

where again � � � � �i� None of the implicit SDC methods based on backward

Euler are L�stable� but the above limit exists� is easily computed� and is less than

one� Hence� as is pointed out in ����� a linear combination of the results from two

di�erent SDC methods can be used to construct an L�stable method�

For the SISDC methods� matters are more subtle� The ampli�cation factor is not

a rational function of �� but instead a ratio of polynomials in � and �� Therefore

the limit in Eq� ���� depends on how the limit is taken� For �xed � however� the

limit in Eq� ���� exists and does not depend on �� None of the SISDC methods

studied here have the property that this limit is zero� hence none could possibly be

considered L�stable in any generalized sense� It is possible� however� to construct

a scheme for which this limit does vanish�

Following ����� let 	�k� p� be the limit in Eq� ���� for the SISDCk
p method� As in

the fully implicit case� 	�k� p� can be easily approximated numerically� If k�� k�� p��

and p� are such that 	�k�� p�� �� 	�k�� p��� then the method de�ned by the linear

combination

	�k�� p��SISDCk�
p� � 	�k�� p��SISDCk�

p�

	�k�� p��� 	�k�� p��

would have the property that the limit in Eq� ���� vanishes� However� it is certainly

not obvious under what conditions this procedure would be advantageous� and the

subject is not pursued further in this paper�

���� Order Versus Accuracy

Although informative� the stability diagrams presented in the last section give

no information concerning the accuracy of computed solutions� In the context of

higher�order methods� a more important measure of the e
ciency of a method is

the relative accuracy region� Whereas the stability diagram for a method gives an

indication of how large the time step can be so that the solution does not contain

catastrophic error� accuracy diagrams give an indication of how large a time step

can be so that certain error criteria are met� In this section� the accuracy diagrams

of SISDC methods of di�erent orders will be presented and compared to those of a

particular additive Runge�Kutta method�

For a given accuracy 
� the accuracy region is the set of � � C for which j������

e�j � 
� The accuracy regions for the SISDC methods for 
 � ���� are shown in

Fig� �� As one would expect� the size of the accuracy region increases with the order

of the method� As with stability diagrams� it is more relevant to consider stability

diagrams which are scaled by the number of function evaluations required for the

method� The scaled accuracy regions are shown in Fig� �� and unlike the stability

diagrams� the higher�order methods still have larger accuracy regions after scaling�

The scaled regions for 
 � ����� where the di�erences are more pronounced� are

displayed in Fig� �� This implies that the greater the accuracy required of the

solution� the more cost�e�ective higher�order methods become�
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As a comparison� the accuracy diagram of an SISDC method is compared to

a semi�implicit additive Runge�Kutta method from ����� Fig� 	 shows the scaled

accuracy diagrams for the fourth�order ARK����	L���SA method and the SISDC�
�

method for 
 � ����� At this level of precision� the two methods are of comparable

e
ciency in terms of accuracy per function evaluation� Since the SISDC method

is of higher order� the size of the corresponding accuracy region will shrink more

slowly than that of the ARK method as 
 is further decreased� This is con�rmed

in Fig� 	 which shows the scaled accuracy diagrams for 
 � ������
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FIG� �� Scaled accuracy regions for error tolerance 
��� for the SISDC�

�
method and the

fourth�order �semi�implicit� Additive Runge�Kutta method of Kennedy and Carpenter�

The pertinent point is that higher�order SISDC methods are more e
cient than

lower�order SISDC or additive Runge�Kutta methods when the solution is required
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to be computed very accurately� The threshold at which higher�order methods

become more e
cient is� of course� problem dependent� For example� in the sti�

Van der Pol�s equation test problem presented in Sect� �� the ARK method is more

e
cient in terms of accuracy per function evaluation than the SISDC method for

the size of time steps considered� although one could reasonably conclude from the

error plots that the opposite would be true if greater accuracy were required�

���� Ladder Methods

It is possible to reduce the computational cost of a single step of the SISDC meth�

ods presented above without reducing the order of the overall method� One strategy

for doing this is based on the observation that the kth correction equation only re�

quires that the solution up to that point have truncation error of size O��tk����

Therefore� it is possible to reduce the number of substeps used to compute the

solution when k is small� In the following discussion� iterations corresponding to k

small will be referred to generically as the lower�order iterations� The stability and

accuracy of the resultant method will of course be a�ected� In the context of using

SISDC methods for PDEs� it may be the case that the solution is well resolved

in time �and presumably the time�step is restricted by spatial resolution�� In this

case� reducing the temporal resolution of the lower�order iterations is justi�ed�

As an example� consider the fourth�order SISDC�
� method� Rather than using

three substeps per iteration� it is su
cient to use only one for the initial iteration�

then two for the following two iterations� and three for the last� yielding a total

of eight rather than twelve total substeps� As is shown in Fig� 
� the fourth�order

ladder method has a scaled accuracy region of similar size as that of SISDC�
� �

The scaled accuracy regions for a of variety of possible ladder methods of vari�

ous order have been compared to those of the corresponding SISDCK
K methods�

No variation has been found that produces a substantially more e
cient method

although the possibility certainly exists� It is possible that in the context of PDEs�

more e
cient methods could be developed by reducing both the spatial and tem�

poral resolution for lower�order iterations� This will be addressed in future work�

�� NUMERICAL EXAMPLES

To evaluate the performance of the SISDC methods� versions varying in order

from three through seven are tested on two di�erent sets of problems� In the �rst

set of tests� the formal order of accuracy as well as the accuracy for sti� problems

is demonstrated using Van der Pol�s equation� This common test problem is chosen

so that a comparison in terms of accuracy per function evaluation between SISDC

methods and other existing methods can be made� In the second set of tests�

advection�di�usion type PDEs are approximated using the SISDC methods and

MOL�

���� Van der Pol�s Equation

Van der Pol�s equation is a popular nonlinear test problem for methods for sti�

ODEs� The equation prescribes the motion of a particle x�t� by

x���t� � 	��� x�t���x��t� � x�t� � ��
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Making the usual transformation� y��t� � x�t�� y��t� � 	x��t�� and t � t�	 yields

the system

y�� � y�

y�� � ��y� � ��� y���y���
�

where 
 � ��	�� As 
 approaches zero� these equations become increasingly sti��

For the SISDC methods� the �rst equation is treated explicitly� and the second

implicitly�

The �rst example is designed to demonstrate that the SISDC methods do exhibit

the correct convergence behavior on a nontrivial problem� The SISDC methods of

order three through seven are tested on Van der Pol�s equation with 
 � �� In this

case� the equation is not sti�� and the solution is smooth� Initial conditions for

each case are given by y���� � � and y���� � ��� �i�e� y����� � ��� and the solution

is computed to time t � �� with a �xed time step�

To compute numerical errors for this problem� a reference solution is �rst com�

puted using SISDC�
� and ���� time steps� Errors in a given solution are then

computed by interpolating values of the reference solution� Unlike many Runge�

Kutta methods� intermediate values in the SISDC method have full order accuracy�

hence the value of the reference solution at every substep is used in the interpolation�

An approximation to the L� error in time is computed by integrating the absolute

di�erence between the reference solution and each particular numerical solution�

Again intermediate values �which are conveniently located at the Gauss�Lobatto

integration nodes� are used in the integration�

The error in the second components of the solution is displayed in log coordinates

in Fig� � as a function of the number of function evaluations �which isK�K��� times

the number of times steps for the Kth order method�� The corresponding plot for

the �rst component of the solution is virtually identical� and is hence omitted� For

each order� a line corresponding to the expected convergence rate is superimposed�

In each case� the convergence of the numerical solution approaches the expected

value as �t approaches zero� Note as well� that except for larger values of �t� the

number of function evaluations required to attain a given accuracy decreases as

the order of the method increases� In other words� when high precision is desired�

higher�order versions of the method are more e
cient than those of lower order�

���� Sti� Equations and Order Reduction

Since the SISDC methods were motivated by the need to solve problems with both

sti� and non�sti� parts� the above experiment is of limited signi�cance� Therefore�

the above experiment is repeated for a mildly sti� case with 
 � ���� and a sti�

case 
 � ���	� To enable a direct comparison with the ARK methods in ����� the

initial conditions are set to y��� � �� y��� � ���					������������ and solutions

are computed only to time t � ���� Reference solutions are computed using a �th

order fully implicit SDC integrator� and errors are computed by simply comparing

the absolute error at t � ����

The results for 
 � ���� are shown in Figs� �� and ��� As in the non�sti� case� the

convergence rate of each version approaches the expected value as �t approaches

zero� although in this case� the observed convergence rate decreases if only larger
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values of �t are considered� The dramatic dips in the graphs correspond to certain

values at which the error at t � ��� as a function of �t changes sign� These dips

are therefore not a true indication of increased accuracy in the method� In this

example� higher order methods are again more e
cient when higher precision is

required� In terms of accuracy per function evaluation� the higher order methods

compare favorably with the methods in �����
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The results for 
 � ���	 are shown in Figs� �� and ��� In this case� the con�

vergence behavior of the methods in the range of �t displayed di�ers considerably

from the formal order� This phenomenon� known as order reduction� occurs in

Runge�Kutta and other methods as well ���� ��� ���� Also in this range� higher�

order versions are not signi�cantly more e
cient than those with lower order� It

is reasonable to assume that the correct asymptotic convergence rates would be

observed given su
ciently small �t� however� this is not the relevant issue in most

applications�
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Comparing these results with those from the additive Runge�Kutta methods in

����� suggests that the higher�order SISDC methods are more e
cient for mildly

sti� problems when high precision is desired� In very sti� cases� the comparison is

not so clear� In particular� the SISDC methods do not achieve the same absolute

accuracy in the �rst component of the solution as the ARK methods in the range

of the �gures in �����
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Ideally for very sti� problems� one would like to integrate the sti� part of the

equation using a smaller time step than the non�sti� part� This approach is possible

in the SISDC context and is discussed in �	��

���� Method of Lines with SISDC

The motivation behind the development of SISDC methods is for the solution

of PDEs with both sti� and non�sti� terms� Therefore in this section� numerical

examples of simple advection di�usion equations are presented� Given the equation

ut � FE�u� � FI �u�� ��	�
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where FE and FI are functions of u and its spatial derivatives� the SISDC method

can be used with the MOL to yield higher�order� semi�implicit methods�

To illustrate this technique� consider the advection di�usion equation

ut � a�t�ux � d�t�uxx� ����

For simplicity� let the spatial domain be the unit line ��� �� with periodic boundary

conditions�

For a given grid spacing �x let xi � i�x� and let Un
i denote the numerical

approximation to the solution u�xi� tn�� Following the usual custom� indices are

omitted when the value is obvious� If DUi is a �nite�di�erence approximation

to ux�xi�� and LUi an approximation to uxx�xi�� a simple �rst order method for

Eq� ���� is

Um�� � Um ��tm�a�tm�DUm � d�tm���LU
m���� ��
�

Eq� ��
� is an implicit equation for Um�� which requires the inversion of the linear

equation

�I � d�tm����tmL�U
m�� � Um ��tma�tm�DUm� ����

Techniques for solving this equation� as well as many variations of it� are well

established� In particular� e
cient integral equation methods with up to eighth�

order spatial accuracy have recently been developed ��
� ����

In the context of SISDC� a similar equation for the correction must be solved�

Speci�cally� the direct form of Eq� ���� becomes

�I � d�tm����tmL�U
m���k�� � Um�k�� ��tm�a�tm��DUm�k�� �DUm�k�

� d�tm���LU
m���k�� Im��

m �Uk
i �� ����

Here� the last term of the equation is an approximation to the time integral of the

right hand side of Eq� ���� given by the appropriate quadrature rule �see Eq� �����

Im��
m �Uk

i � �

pX
l��

qlm�a�tl�DU l
i � d�tl�LU

l
i ��

In all of the above discussion� the issue of prescribing the boundary conditions for

Eqs� ���� and ���� has been ignored� When Dirichlet or Neumann boundary condi�

tions are imposed at the domain boundary� care must be taken when determining

the boundary conditions imposed during the SISDC process� In particular� the ex�

act prescribed boundary conditions cannot be imposed when solving the correction

equation �except for the �nal correction� without a resulting reduction in the order

of accuracy� This phenomenon is similar to that which occurs with Runge�Kutta

methods ���� ��� �	� ��� �� ���� An important di�erence in the SISDC methods

is that the intermediate solutions are only used to construct the next correction

equation� This is unlike Runge�Kutta methods where the �nal solution is typically

a linear combination of the intermediate function values� A detailed discussion of

boundary conditions for the MOL as well as a general strategy for avoiding the loss

of accuracy for SISDC methods is presented in �����
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The SISDC method is combined with the MOL approach and applied to Eq� ����

with a�t� � ��cos���t�� d�t� � 
��� sin���t����� The initial condition is u�x� �� �

cos���x�� and periodic boundary conditions are enforced� hence the exact solution

is

u�x� t� � e��
��
	t�cos
��t����� cos����x � t� sin����������

The functions a�t� and d�t� are chosen to oscillate rapidly in time in order to

emphasize the temporal error in the numerical solution�

Two di�erent values of 
 are considered� the mildly sti� case 
 � ���� and the

sti� case 
 � ����� For each case the operators D and L are sixth�order centered�

di�erence operators� and the implicit equation is solved via the FFT�

The SISDCK
K method is used for the numerical tests with K � � to �� and the

solution is computed to time t � ��� using a time step �t � ��x� Errors in the L�
norm are plotted versus grid spacing in Figs� �� and �� along with lines with slopes

corresponding to �rd� �th� and �th order convergence� In the mildly sti� case� the

convergence rates are extremely close to the expected values� For the sti� case� the

rates approach the expected values as �t is reduced� It is important to remember

that the real part of the eigenvalues of the linear system of ODEs resulting from the

discretization scales like �
��x�� so as �t approaches zero� the equation becomes

increasingly sti�� For the �nest run� the ratio 
�t��x� is greater than ����

A similar test is performed using a non�linear equation� speci�cally Burgers equa�

tion

ut � uux � 
uxx� ����

The initial conditions are u�x� �� � ����� cos���x�� 
 � ����� and periodic bound�

ary conditions are again used� A solution computed using SISDC�
� and ���� grid

points is used as a reference solution� and the reported errors are calculated by

comparison with this solution at time t � ���� The L� errors are displayed in

Fig� �	 for grid sizes ranging �x � ��	� to ����� and �t � ��x� Lines with

slopes corresponding to �rd� �th� and �th order convergence are superimposed and

con�rm the expected convergence�

	� CONCLUSION

In this paper� a semi�implicit version of the method of spectral deferred correc�

tions for ordinary di�erential equations is presented� The methods are motivated

by the desire to design higher�order methods for partial di�erential equations with

both sti� and non�sti� terms� Numerical tests suggest that in cases that are not

extremely sti�� higher�order SISDC methods are as e
cient or more e
cient than

recent semi�implicit Runge�Kutta methods� For equations with vastly varying time

scales more elaborate time�splitting methods using di�erent sized time�steps may

prove more e�ective� For example� in �	�� it is shown that using smaller time

steps for the reaction piece in a multi�implicit SDC method for advection�di�usion�

reaction equations with very sti� reaction terms increases the overall e
ciency of

the method�

The SISDC methods presented here have already been combined with the method

of lines approach for PDEs� In ����� fourth�order projection methods for the incom�
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pressible Navier�Stokes equations are presented� and numerical examples set in

two�dimensional periodic domain are included there� The imposition of boundary

conditions for semi�implicit projection methods of any variety has been a contro�

versial subject virtually since projection methods were introduced� The relation�

ship between boundary conditions and the accuracy of the pressure is examined

in ���� and a project incorporating this analysis with SISDC methods to create

higher�order semi�implicit projection method for �ows with material boundaries is

underway� Other applications involving the modeling of immersed boundaries in

incompressible �ows� advection�di�usion�reaction equations� and low�Mach number

combustion are also being pursued�
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